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Previous work on the correlation of dissociative non-equilibrium effects on the flow 
field in front of blunt bodies considered the dependence of the dimensionless shock 
stand-off distance on the dimensionless dissociation rate immediately after the normal 
shock in the simple case of a diatomic gas with only one reaction. In this paper, the 
correlation is corrected to take into account the additional parameter of the dimen- 
sionless free-stream kinetic energy, and extended to the case of complex gas mixtures 
with many species and many reactions, by introducing a new reaction rate parameter 
that has a clear physical meaning, and leads to an approximate theory for the stand- 
off distance. Extensive new experimental results and numerical computations of air, 
nitrogen and carbon dioxide flow over spheres were obtained over a large range of 
total enthalpy. The results comprise surface heat flux measurements and differential 
interferograms. Both experimental results and numerical computations substantiate 
the approximate theory. 

1. Introduction 
When a sphere is placed in a flow at high Mach number and at such high velocity 

that the ordered kinetic energy of the uniform free stream is comparable with the 
dissociation energy of the gas, two new parameters (in addition to those of perfect-gas 
flows) enter the problem. In the simplest case of dissociation of a single diatomic gas, 
a dimensionless number of the form K = & / ( 2 D )  measures the free-stream kinetic 
energy in terms of the dissociation energy of the gas. Here, urn is the free-stream 
speed and D is the specific dissociation energy of the gas. 

If the gas density is sufficiently large, the collision frequency between the molecules 
is high and produces a dissociation rate that is fast enough to cause significant 
dissociation over distances that are comparable with the diameter of the sphere. In 
the simplest case of dissociation of a single diatomic gas, where the composition may 
be characterized by a single variable, e.g. the dissociation fraction a, this means that 
a dimensionless number of the form 

is O(1). Here, the time derivative is the dissociation rate at a representative point, e.g. 
just after the normal shock wave, and d is the diameter of the sphere. High density is 
required to satisfy this condition because the dissociation rate is directly proportional 
to the density. Clearly, this means that the product of density and body size has to 
be sufficiently large. Hence, the Reynolds number of the flow is also large, and for 
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FIGURE 1. Schematic of control volume, and notation. 

many purposes the flow may be considered to be inviscid to very good approximation. 
Infinite Q corresponds to such a fast reaction that the flow may be considered to be 
in equilibrium, while zero Q corresponds to no dissociation, or the frozen limit. For 
given free-stream conditions, Q can be varied by changing the size of the body. 

A well-known feature of hypervelocity blunt-body flows is that the shock wave 
stand-off distance A is inversely proportional to the average density on the stagnation 
streamline. This follows from a very simple argument which is presented here because 
it determines the right dimensionless numbers to choose for the problem. Consider 
the control volume shown in figure. 1. Apply continuity to this control volume. At 
the left, the rate at which mass enters the control volume is ump& or mmpcab2, 
depending on whether the flow is plane or axisymmetric. For small b, the rate at 
which mass leaves the control volume is ubpA or 2nubbpA, respectively, where p is 
the average density in the shock layer. With ub w U , C O S ~  and b = rscosq5, mass 
balance gives 

l A p  1 1 
= -  and = - 

2 r s p ,  4 2 
respectively, for axisymmetric and plane flow. Here, rs is the radius of curvature of the 
shock. Since the stand-off distance is small compared to the body radius, d / 2  w r, 
and the dimensionless parameter on the left may be formed with the body radius 
instead of the shock radius. The importance of this simple argument is not in the 
numbers on the right, but in the fact that it brings out the importance of the average 
density in the shock layer. 

This topic was studied theoretically and experimentally in some detail by Hor- 
nung (1972). By examining a large number of numerical computations of dissociating 
flow over cylinders, it was found that the dimensionless stand-off distance, in the form 

could be correlated by plotting it against the parameter 52. Here, p s  is the density 
immediately after the normal shock. The computed density fields in the shock layer 
were also shown to be correlated approximately by 52. However, the experimental 



Non-equilibrium dissociating flow over spheres 391 

results of that study, obtained in the free-piston shock tunnel, T3, at the Australian 
National University, did not corroborate the numerical correlation very well. 

This earlier study suffered from two main problems. First, the theory was limited 
to a single diatomic gas, and did not account for the effect of K on 2. No derivation 
of the correlation of 2 with SZ was given. Second, the unavoidable end-effects in 
experimental studies of flow over cylinders manifest themselves in just the same 
manner as non-equilibrium dissociation effects, so that the latter were obscured by 
them. Also, the facility employed probably suffered from driver-gas contamination at 
the highest specific enthalpies tested. 

Therefore, in the present study, we have the following three aims: to perform 
a theoretical study to relate the stand-off distance to both SZ and K ;  to seek a 
more general reaction rate parameter, that allows the gas to consist of many species 
with many reactions; and to test the results experimentally and numerically. In the 
experiments, the new facility T5, at GALCIT, in which the density is significantly 
larger than was possible in T3 so that interferograms of flow over spheres give 
sufficient resolution, permitted the bothersome problems associated with flow over 
cylinders to be avoided. In the numerical investigation, the code developed by 
Candler (1988) was employed. 

2. Conditions along the stagnation streamline 
2.1. Eflect of chemical reactions 

Consider the stagnation streamline along the symmetry axis between the shock and 
the stagnation point. The momentum and energy equations for inviscid adiabatic 
flow take the simple forms 

dp + pudu = 0 = dh + udu, 

where p, p, u, and h are pressure, density, velocity and specific enthalpy respectively. 
Thus, 

dp = pdh . 
This equation does not mean that the entropy is constant along the stagnation 
streamline, but rather that the only entropy change that occurs is that associated with 
the chemical reaction: 

where T, s are temperature and specific entropy, and the pi and ci are the chemical 
potentials and mass fractions of the constituents. Let the caloric equation of state be 
given in the form 

h = h(p, P, ci) * 

Since the mass fractions must satisfy the identity 
n 

i=l  

the number of mass fractions that are independent is one less than the total number n 
of components present. It is usually convenient to choose c1 as a dependent variable 
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and the other ci as independent variables. Thus, 
n 

where the subscripts denote partial differentiation. Solving for dp, 

Note that the coefficient of dh is related to the frozen speed of sound q, and that 
dh may be replaced by -udu. Rewriting the first term on the right of this equation 
accordingly, it becomes 

d p  = -.' du - 12 hCidci , 
P a; PhP i=2 

where 
- h P  a2 - 

- hp - l /p  * 

The frozen Mach number u / q  after the normal shock is typically 0.2 or less. This 
means that, in the absence of dissociation, the density is practically constant along the 
stagnation streamline, and, with dissociation, the density change along the stagnation 
streamline is essentially controlled by the chemistry: 

This approximation makes it possible to relate the average density on the stagnation 
streamline to the rate at which energy is absorbed by the chemical reactions at the 
shock. This then appears to be the right quantity to incorporate in a new reaction 
rate parameter 

For a given gas mixture, 

which has the physical significance of 

- 
Q =  

Energy absorption rate by chemistry 
Input rate of free-stream kinetic energy' 

In order to determine the value of 5 it is necessary to express hp in terms of the 
conditions at the shock. This may be done by assuming that the gas mixture obeys 
the thermal equation of state 
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FIGURE 2. Density profile along the stagnation streamline from numerical computations for 

different values of the reaction rate parameter. 

where 

and Wi and W are the molecular weights of species i and of the dissociated gas 
mixture, respectively. This leads to 

where 
n 

cp = C c i c p i  7 

i=l 

and the cpi are the specific heats at constant pressure of the constituents. The value 
of h, at the shock can be estimated by approximating the value of ps  with pcou$, so 
that 

2.2. Density proJile 

Figure 2 shows seven density profiles along the stagnation streamline obtained using 
an inviscid version of Candler's code plotted against y/d, where y is the distance 
from the shock. The free-stream conditions for these different profiles were the same, 
and the changes are brought about by successively increasing the sphere diameter. 
As may be seen, the profile changes in a monotonic fashion from the frozen-flow 
profile, with virtually constant density, to the equilibrium profile, in which all the 
dissociation, and therefore all the density change, occurs in the shock, and the density 
is again virtually constant thereafter. 

Recall that the quantity that determines the stand-off distance is the average density. 
In fact, numerous correlations of stand-off distance with average density have been 
made for non-reacting flow. Upon interpretation into our variables, these give the 
following result: 

where L = 0.41 for spheres. 
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FIGURE 3. Simplified density profiles for the purpose of determining an approximate average value 
of the density along the stagnation streamline. P b  and pe denote the stagnation-point density and 
the equilibrium density, respectively. By comparing with Fig. 2, it is clear that using this linear 
approximation will overestimate the average density slightly, because the actual profiles are always 
convex up. 

Because the stand-off distance is related to the average density, the exact details 
of the density profile are not important and we can proceed in an approximate 
Karman-Pohlhausen-type analysis by assuming linear density profiles between the 
shock and the body, provided that the density on the body P b  is smaller than the 
equilibrium density p e .  If the linear profile reaches p e  before the stagnation point, the 
density is taken to be constant thereafter at pe. This clearly requires the equilibrium 
density to be determined and is evidently the place where the dependence of 2 on K 
(and therefore the recombination reaction) enters. 

To proceed with the analysis, distinguish the cases where P b  < pe from those 
in which the body density is pe. The slope of the density profile at the shock is 
determined from the dissociation rate just downstream of the shock. Figure 3 shows 
the simplified linear profiles. 

3. Analytic solution for the stand-off distance 

When Pb < pe, the linear profiles give 
3.1. The case when P b  c p e  

(dpldt), can then be approximated as 

Using the definition of 6 to replace (dp/dt), leads to the quadratic equation for 2 
-2 - 2  

51 
Ll - ( L - A ) :  = 0 

Only one of the two roots of this equation is physically meaningful. It is 

2 = L [-1 + (1 + 2 L C y 2 ]  
52 

(3.1) 
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FIGURE 4. Plot of equations (3.1) (dashed line), and (3.2) (full lines) for 

p s / p e  =0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. 

This has the correct limit 2 = L at 5 = 0, but will clearly fail at large 5, because 
we have to proceed differently in calculating p when the linear profile reaches the 
equilibrium density within the shock layer. 

3.2. The case when P b  = pe 

For values of 6 that are sufficiently small, so that P b  < pe, the previous section 
shows that 2 depends only on E .  When P h  = pe, however, this is no loger true, since 
the equilibrium value of the density now enters the calculation of p. Thus, a critical 
value of 6 exists for each free-stream condition, beyond which 2 depends on two 
parameters, changing in form 

from 2 = f(5) to 2 = g ( 5 ,  pe/ps). 

By proceeding as in the previous section, but this time forming the average density 
from the linear profile up to the point where p reaches pe and a constant-density part 
with p = pe thereafter, the average density becomes 

By using the relation between the average density and the stand-off distance, and 
solving for 2, we obtain 

Again, this may be seen to have the correct limiting value Lps/pe when fi = co. 
Equations (3.1) and (3.2) are plotted in figure 4. The curves of the two-parameter 

family of equation (3.2), valid for large fi, are nearly tangent to the single curve of 
equation (3.1), valid for small 5 at the transition point, which is different for different 

The coordinates of the transition point (So, do), can be determined explicitly as 
PslPe. 

- (pe/ps)2 - 1 
2L ’ 0 0  = 



396 C.-X Wen and H.  G. Hornung 

and 

The slopes of the two curves are not quite the same at this point. This may be 
seen from the fact that the average density increases less rapidly with 6 when the 
equilibrium density is reached before the stagnation point than if pe > P b  (see 
figure 3). 

3.3. Discussion 
The approximate theory leading to equations (3.1) and (3.2) takes account of the 
free-stream kinetic energy K through the appearance of the equilibrium density pe. 
This is therefore the place where the effect of the recombination reactions enters 
the picture. For higher values of K ,  i.e. higher values of the total enthalpy ho, the 
amount of energy absorbed by dissociation to equilibrium is increased, so that pe/ps 
is increased, and d is decreased. The approximate theory takes all of these effects into 
account in the simplest approximation. The two-part approximation of the density 
profile (linear plus constant) makes it necessary to distinguish between the regimes of 
low and high 6 with the two equations (3.1) and (3.2). 

The two-part approximation also overestimates the average density and therefore 
underestimates the stand-off distance, as will be seen later. This error may be reduced 
significantly if the approximation for the density profile is improved, for example, by 
writing it as 

Integrating this to determine the average leads to 

This is now a single equation for the average density, from which a single equation 
for 2 can be obtained by substituting in 

- Ps A = L=, 
P 

and solving the resulting equation for 2. In this case, an explicit solution is not 
possible, except in the two limiting cases, where the results are, of course, the same 
as equations (3.1) and (3.2). This refined theory is more accurate in the mid-range of 
5. However, the simple forms of equations (3.1) and (3.2) are surprisingly accurate 
and the theory is much more transparent in this simpler form. 

The manner in which the stand-off distance may be described in terms of the two 
parameters K and 6 is, of course, also of wider significance. It may be expected, for 
example, that, for a given gas, the density field in the shock layer of a blunt body 
will be the same for all flows in which these two parameters take the same value. The 
stand-off distance just serves as a convenient variable to test this concept. The success 
of the simple correlation stems from the fact that the influence of the chemistry on the 
fluid motion acts through the removal or addition of energy to or from the chemical 
energy store represented by the dissociated species. Thus, the important step in the 
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analysis is to express fi in terms of the dimensionless chemical energy absorption 
rate. 

4. Computational method 
The code developed by Candler (1988) was used to compute the inviscid reacting 

flow over a sphere. The flow field is described by coupled partial differential equations 
for the conservation of species, mass, mass-averaged momentum, vibrational energy of 
each diatomic species and total energy. A finite-volume method using modified Steger- 
Warming flux-vector splitting is used to obtain the steady-state solution to these fully 
coupled equations for different gases. Park's semi-empirical two-temperature model 
and chemical kinetics model (Park 1988, 1989) was used to calculate the reaction rates 
for different reactions of air and nitrogen. For carbon dioxide, the chemical kinetics 
model of Park et al. (1991) was used. The scheme is implicit, using Gauss-Seidel line 
relaxation and is second-order accurate in the tangential direction. A compromise 
between efficiency in computational time and accuracy led to the use of a (56x100) 
grid throughout the present work. Extensive documentation of successful examples 
exists in reproducing experimental results in great detail, see e.g. Candler (1988), 
Rock, Candler & Hornung (1992), Wen & Hornung (1993), and Hornung et al. (1994). 
Since the shock values of temperature, vibrational temperatures, and density are not 
accessible during the experiment, the computational method provides a good way to 
obtain partial information about them. 

The stand-off distance and the shock values of the reaction rate and density 
for the numerical calculation are determined from the point where the vibrational 
temperature reaches a maximum. 

5. Experiment 
5.1. Facility 

The facility used for all the experiments described here was the free-piston shock 
tunnel T5 at GALCIT. The facility uses the principle of free-piston adiabatic com- 
pression of the driver gas of a shock tunnel to achieve the high shock speeds and 
densities required to generate high enthalpy and reaction scaling. It is capable of 
producing flows of air or nitrogen up to specific reservoir enthalpy ho of 25 MJ kg-' at 
reservoir pressure po up to 100 MPa. The shock tunnel has two additional important 
features. One is that the test duration is sufficiently short to avoid destruction of 
the machine by melting, yet long enough to provide good measurements during the 
steady-flow period. The other is that the gas is partially dissociated at the nozzle exit, 
especially in the cases of air and carbon dioxide at high specific reservoir enthalpies, 
where these gases also contain, respectively, some nitric oxide and carbon monoxide. 
A more detailed description of T5 and its performance envelope, flow quality and 
repeatability may be found in Hornung (1992). 

5.2. Free-stream conditions 
For the experiments, the flow was generated through a contoured nozzle of 300 mm 
exit diameter and 30 mm throat diameter. Using an equilibrium calculation, the 
specific reservoir enthalpy can be determined from the measured shock speed and the 
measured reservoir pressure. The nozzle flow is then computed by using an axisym- 
metric inviscid non-equilibrium flow code developed by Rein (1989). The calibration 
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PO ho Tm ~ r n  
(MPa) (MJ kg-') (km s-l) (K) (kg m-3) 

Nitrogen 
from 30 10.58 4.2 1390 0.0175 
to 90 21.06 5.5 2760 0.0561 

Air 
from 30 9.81 3.9 1340 0.0152 
to 90 22.15 5.6 2930 0.0627 

Carbon dioxide 
from 30 4.5 2.5 1130 0.0326 
to 90 11.95 3.6 2400 0.162 

TABLE 1. Range of reservoir and free-stream conditions 

r Print film r Neutral density filter r Wollaston prism 

Nd : Y AG Tunable - dye laser 
532 nm 589.6 nm 

laser 

FIGURE 5. Schematic diagram of the optical arrangement. Bandpass and spatial filters are used to 
reduce the luminosity emitted from the test gas. The bandwidth of the bandpass filter is 10 nm 
centred at 590 nm for the dye laser and 10 nm centred at 532 nm for the neodymium-YAG laser. 

of the free-stream conditions obtained by this method has been accomplished by mea- 
suring test section Pitot pressure distribution, see Rousset (1994) and stagnation-point 
heat flux, see Wen (1994). 

Table 1 gives the ranges of values of the reservoir and test section conditions chosen 
for the present investigation. The Mach number of the free stream is about 5.5 for 
nitrogen, 5.3 for air and 4.6 for carbon dioxide. 

5.3. Models and flow visualization 
The models were spheres with diameters 1, 2, 3, 4 and 6 in. in order to vary the 
reaction rate parameter at a given tunnel condition. This has an upper limit of 6 in. 
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FIGURE 6. Finite fringe differential interferograms of air flow over 1, 2, 3 and 4 in. diameter spheres. 
1 = 589 nm. (a) PO = 58 MPa, ho = 10.7 MJ kg-'. (b)  po = 25 MPa, ho = 9.8 MJ kg-'. (c )  
PO = 28 MPa, ho = 10 MJ kg-'. ( d )  po  = 27.5 MPa, ha = 16 MJ kg-'. The blemish ahead of the 
bow shock wave in interferograms (a) and (b) is due to a flaw in the optical window. 

because of the useful diameter of the flow, and a lower limit of 1 in. because of the 
resolution of the optical system. The spheres were instrumented with thermocouples 
to measure the surface temperature history and thus the surface heat flux, in particular 
at the stagnation point, 

The optical system used for flow visualization is a differential interferometer shown 
schematically in figure 5. This instrument uses a Wollaston prism in a conventional 
schlieren setup and was used in the finite-fringe mode with a dye laser producing 
5 mJ pulses of 6 ns duration. 

6. Results 
6.1. Density $field 

As an example of the interferometric results obtained, figure 6 shows a set of four 
finite-fringe differential interferograms of air flow over four different-size spheres, and 
figure 7 shows five cases of carbon dioxide flow. A large number of such measurements 
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FIGURE 7. Finite fringe differential interferograms of COz flow over 1, 2, 3,  3, and 4 in. diameter 
spheres. A = 589 nm. (a) po = 55 MPa, ho = 6 MJ kg-'. ( b )  p o  = 25 MPa, ho = 12 MJ kg-'. 
(c) PO = 25 MPa, ho = 9 MJ kg-'. ( d )  po = 55 MPa, ho = 4.6 MJ kg-I. (e )  po = 22.5 MPa, 
ho = 11.4 MJ kg-'. 
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FIGURE 8. Comparison of measured (right) and computed differential interferograms in the case of 
air flow over a 4 in. sphere, at po = 27.5 MPa, ho = 16 MJ kg-'. 
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FIGURE 9. Numerical (open symbols) and experimental (full squares) results for nitrogen flow 
plotted in the old variables, with equations (3.1) and (3.2) superimposed. As may be seen, in these 
variables, the curves for different ps/pe are shifted relative to each other. 

were taken, and compared with numerically computed interferograms. An example of 
such a comparison is presented in figure 8. Extensive comparisons of this kind have 
been made. More detail about the results of such comparisons are reported elsewhere, 
see e.g. Wen (1994) and Hornung, Wen & Candler (1994), Hornung (1994). 

6.2. Stand-of distance 

If equations (3.1) and (3.2) are plotted in the form 2 us. the old reaction rate 
parameter 52, in the only case where Q can meaningfully be defined, i.e. for nitrogen, 
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FIGURE 10. Plot of equations (3.1) and (3.2) for selected values of ho, resulting in different values of 
p, /p , .  The symbols represent computational results for (a) air (b)  carbon dioxide. The full circles 
are the junction points of equation (3.1) and equation (3.2). Note that the theory underestimates 
the stand-off distance slightly, consistently with the overestimate of the average density. 

the situation presented in figure 9 results. The manner in which this causes the curves 
for different values of p,/p, to be shifted relative to each other is the reason why 
the mistake of thinking that only one correlating parameter, Q, is required, is easily 
made. The difference becomes clear when the results are plotted against 6, as in 
figure 10(a) which presents computational results for the case of air. Note that the 
value of ps /pe  depends on ho. Similar results are presented in figure 10(b) for carbon 
dioxide flows. 

In these two plots the slight underestimate of the stand-off distance by the theory 
that results from the overestimate of the average density is evident in the mid-range 

Next, we compare the experimentally measured stand-off distance in both these 
gases with the approximate theory, see figures ll(a) and ll(b).  In the case of air, the 
effect appears to be much smaller than is the case in figure 10(a). This is because 
the highest value of the enthalpy in the computed cases is 38.2 MJ kg-', whereas the 
experiments only range up to 20.6 MJ kg-'. Clearly, the nitrogen in the air is not 

of 6. 
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FIGURE 11. Comparison of measured dimensionless stand-off distance with the analytical theory in 
the case of (a) air flows (b)  carbon dioxide flows. 

fully dissociated at the latter value. In the case of carbon dioxide, the effect is more 
dramatic, because it has lower dissociation energies. In the case of air, it may also be 
seen that most of our experiments were conducted at conditions that are fairly close 
to equilibrium, since the points all lie on the large-fi branch of the theory. 

6.3. Stagnation-point heat flux 
It remains to present an example of the measured stagnation-point heat flux. The 
high enthalpies of the flows studied can produce quite substantial values of this 
quantity. For example, on the small sphere, values up to 30 MW m-* were obtained. 
The importance of measuring this quantity lies partly in the need to substantiate the 
reservoir specific enthalpy, b, which is determined indirectly from the measured shock 
speed in the shock tube. Figure 12 shows measurements of the stagnation-point heat 
flux in dimensionless form (Stanton number) plotted against the free-stream Reynolds 
number based on the sphere diameter for three different gases. These are compared 
with appropriate predictions from the correlation according to Fay & Riddell (1958). 
The flow and surface conditions are such that full recombination of the dissociated 
species may be expected to occur. (Catalytic surface.) While the experiments show 
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FIGURE 12. Comparison of measured dimensionless stagnation-point heat flux (symbols) with 
Fay & Riddell's correlation. 

substantial scatter, the differences between the different gases are significant and 
follow the predicted differences. This provides some confirmation of the indirectly 
determined value of b. 

7. Conclusions 
Theoretical, numerical and experimental results on the hypervelocity dissociating 

flow of nitrogen, air and carbon dioxide over spheres have been presented. An approx- 
imate theory relating the dimensionless shock stand-off distance to the dimensionless 
total enthalpy and a reaction rate parameter corrects and extends previous relations 
of this kind. A previous correlation did not take into account the effects of recom- 
bination reactions which appear through the total enthalpy parameter, nor could it 
deal with mixtures comprising many species with many reactions. By introducing a 
reaction rate parameter that is a measure of the rate of energy absorption by chemical 
reactions immediately behind the normal shock, scaled by the rate of input of kinetic 
energy, it is possible to deal with complex mixtures. 

Experimental results from the hypervelocity shock tunnel T5 and numerical com- 
putations support the approximate theory and give detailed information about the 
flow field in the form of measured and computed differential interferograms as well 
as stagnation-point heat transfer data. 

The work leading to the material presented in this paper was sponsored by AFOSR 
URI grant F49620-93-1-0338 (Dr J. Tishkoff). 
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